Published:
E. Dias, C. Rito, G. Urzúa
On degenerations of Z/2-Godeaux surfaces
Rev. Mat. Iberoam. 38, no. 5, 1399-1423 (2022)
DOI: 10.4171/rmi/1376
C. Rito
Examples of surfaces with canonical map of degree 4
Épijournal Géom. Algébr. 6, Art. no. 10 (2022)
DOI: 10.46298/epiga.2022.7615
C. Rito,
Surfaces with canonical map of maximum degree
J. Algebraic Geom. 31, 127-135 (2022)
DOI: 10.1090/jag/761
C. Gleissner, R. Pignatelli, C. Rito,
New surfaces with canonical map of high degree
Commun. Anal. Geom. 30, no. 8, 1811-1823 (2022)
DOI: 10.4310/CAG.2022.v30.n8.a5
V. Koziarz, C. Rito, X. Roulleau
The Bolza curve and some orbifold ball quotient surfaces
Michigan Math. J. 70, no. 2, 423-448 (2021).
DOI: 10.1307/mmj/1595405184
F. Polizzi, C. Rito, X. Roulleau
A pair of rigid surfaces with p_g=q=2 and K^2=8
whose universal cover is not the bidisk,
Int. Math. Res. Not. 2020, no. 11, 3453-3493 (2020).
DOI: 10.1093/imrn/rny107
C. Rito, X. Roulleau, A. Sarti,
Explicit Schoen surfaces,
Algebr. Geom. 6 (2019), no. 4, 410-426.
DOI: 10.14231/AG-2019-019
C. Rito,
New surfaces with K^2=7 and p_g=q<=2,
Asian J. Math. 22, No. 6, 1117-1126 (2018).
DOI: 10.4310/AJM.2018.v22.n6.a7
C. Rito,
A surface with canonical map of degree 24,
Int. J. Math. 28, no. 6 (2017).
DOI: 10.1142/S0129167X17500410
C. Rito,
A surface with q=2 and canonical map of degree 16,
Michigan Math. J. 66, no. 1, 99-105 (2017).
DOI: 10.1307/mmj/1488510027
C. Rito,
Cuspidal quintics and surfaces with p_g=0, K^2=3 and 5-torsion,
LMS J. Comput. Math. 19, no. 1, 42-53 (2016).
DOI: 10.1112/S1461157015000315
C. Rito,
New canonical triple covers of surfaces,
P. Am. Math. Soc. 143, no. 11, 4647-4653 (2015).
DOI: 10.1090/S0002-9939-2015-12599-3
C. Rito, M. M. Sanchez,
Hyperelliptic surfaces with K^2<4\chi-6,
Osaka J. Math. 52, no. 4 (2015).
Link
C. Rito,
Some bidouble planes with p_g=q=0 and 4<=K^2<=7,
Int. J. Math. 26, no. 5 (2015).
DOI: 10.1142/S0129167X15500354
C. Rito,
Involutions on surfaces with p_g=q=0 and K^2=3,
Geom. Dedicata 157, no. 1, 319-330 (2012).
DOI: 10.1007/s10711-011-9612-1
C. Rito,
On equations of double planes with p_g=q=1,
Math. Comp. 79, 1091-1108 (2010).
DOI: 10.1090/S0025-5718-09-02283-2
C. Rito,
Involutions on surfaces with p_g=q=1,
Collect. Math. 61, no. 1, 81-106 (2010).
DOI: 10.1007/BF03191228
C. Rito,
A note on Todorov surfaces,
Osaka J. Math. 46, no. 3, 685-693 (2009).
Link
C. Rito,
On surfaces with p_g = q = 1 and non-ruled bicanonical involution,
Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6, no. 1, 81-102 (2007).
DOI: 10.2422/2036-2145.2007.1.05
I. Labouriau, C. Rito,
Stability of equilibria in equations of Hodgkin-Huxley type,
Contemporary Mathematics 354 (2004), 137-143.
Link