Publications

    Menu:

    • Home
    • Publications
    • Quartic surfaces
    • Magma code

    Published:

    E. Dias, C. Rito, G. Urzúa
    On degenerations of Z/2-Godeaux surfaces
    Rev. Mat. Iberoam. 38, no. 5, 1399-1423 (2022)
    DOI: 10.4171/rmi/1376

    C. Rito
    Examples of surfaces with canonical map of degree 4
    Épijournal Géom. Algébr. 6, Art. no. 10 (2022)
    DOI: 10.46298/epiga.2022.7615

    C. Rito,
    Surfaces with canonical map of maximum degree
    J. Algebraic Geom. 31, 127-135 (2022)
    DOI: 10.1090/jag/761

    C. Gleissner, R. Pignatelli, C. Rito,
    New surfaces with canonical map of high degree
    Commun. Anal. Geom. 30, no. 8, 1811-1823 (2022)
    DOI: 10.4310/CAG.2022.v30.n8.a5

    V. Koziarz, C. Rito, X. Roulleau
    The Bolza curve and some orbifold ball quotient surfaces
    Michigan Math. J. 70, no. 2, 423-448 (2021).
    DOI: 10.1307/mmj/1595405184

    F. Polizzi, C. Rito, X. Roulleau
    A pair of rigid surfaces with p_g=q=2 and K^2=8
    whose universal cover is not the bidisk
    ,
    Int. Math. Res. Not. 2020, no. 11, 3453-3493 (2020).
    DOI: 10.1093/imrn/rny107

    C. Rito, X. Roulleau, A. Sarti,
    Explicit Schoen surfaces,
    Algebr. Geom. 6 (2019), no. 4, 410-426.
    DOI: 10.14231/AG-2019-019

    C. Rito,
    New surfaces with K^2=7 and p_g=q<=2,
    Asian J. Math. 22, No. 6, 1117-1126 (2018).
    DOI: 10.4310/AJM.2018.v22.n6.a7

    C. Rito,
    A surface with canonical map of degree 24,
    Int. J. Math. 28, no. 6 (2017).
    DOI: 10.1142/S0129167X17500410

    C. Rito,
    A surface with q=2 and canonical map of degree 16,
    Michigan Math. J. 66, no. 1, 99-105 (2017).
    DOI: 10.1307/mmj/1488510027

    C. Rito,
    Cuspidal quintics and surfaces with p_g=0, K^2=3 and 5-torsion,
    LMS J. Comput. Math. 19, no. 1, 42-53 (2016).
    DOI: 10.1112/S1461157015000315

    C. Rito,
    New canonical triple covers of surfaces,
    P. Am. Math. Soc. 143, no. 11, 4647-4653 (2015).
    DOI: 10.1090/S0002-9939-2015-12599-3

    C. Rito, M. M. Sanchez,
    Hyperelliptic surfaces with K^2<4\chi-6,
    Osaka J. Math. 52, no. 4 (2015).
    Link

    C. Rito,
    Some bidouble planes with p_g=q=0 and 4<=K^2<=7,
    Int. J. Math. 26, no. 5 (2015).
    DOI: 10.1142/S0129167X15500354

    C. Rito,
    Involutions on surfaces with p_g=q=0 and K^2=3,
    Geom. Dedicata 157, no. 1, 319-330 (2012).
    DOI: 10.1007/s10711-011-9612-1

    C. Rito,
    On equations of double planes with p_g=q=1,
    Math. Comp. 79, 1091-1108 (2010).
    DOI: 10.1090/S0025-5718-09-02283-2

    C. Rito,
    Involutions on surfaces with p_g=q=1,
    Collect. Math. 61, no. 1, 81-106 (2010).
    DOI: 10.1007/BF03191228

    C. Rito,
    A note on Todorov surfaces,
    Osaka J. Math. 46, no. 3, 685-693 (2009).
    Link

    C. Rito,
    On surfaces with p_g = q = 1 and non-ruled bicanonical involution,
    Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6, no. 1, 81-102 (2007).
    DOI: 10.2422/2036-2145.2007.1.05

    I. Labouriau, C. Rito,
    Stability of equilibria in equations of Hodgkin-Huxley type,
    Contemporary Mathematics 354 (2004), 137-143.
    Link

    Preprints:

    E. Dias, C. Rito
    Z/2-Godeaux surfaces

    (Available at arxiv.org)

    Other:

    C. Rito,
    On the construction of complex algebraic surfaces
    CIM Bulletin, 38, 39, 3-7 (2017).

    Ph.D. Thesis:

    C. Rito,
    On surfaces of general type with $p_g=q=1$ having an involution
    Download

    Supervisor: Margarida Mendes Lopes